
From Power-on to [/usr/root/]#
A brief guide to Linux 0.11 booting

System startup and booting process

• Hardware
▫ Power supply
▫ Motherboard
▫ CPU
▫ Storage device (hard drive or floppy)

• Software
▫ BIOS and POST
▫ Boot sector
▫ Bootstrap (OS loader)
▫ OS kernel initialization (Linux 0.11)

When you pressed the power button…

• It applies a ground to the green
wire (ATX connector, pin 16)
through motherboard.

• It kickstarts the PSU circuit
(your AC power supply), then
active the main power circuits.

• When motherboard is powered
up, it initializes it own firmware
like the chipsets and other.

When you pressed the power button…

• The chipset generates a reset signal to CPU to
prevent harm from unreliable power.

• As soon as all the power supply reach operating
voltage, a “Power OK” (a.k.a “Power Good”)
signal will raise. (Actually it’s a +5V signal on
gray wire, pin 8 on ATX connector)

• This signal also removes the hardware reset
signal from the CPU, so the CPU could initialize
itself.

CPU Initialization

• When the processor starts up, there’s nothing to
execute in memory.

• CPU IP (Instruction Pointer, EIP in 32bit CPUs)
is pre-programmed to always point to address
0xFFFFFFF0 (the end of the memory – 16bytes)

• This particular address is called “reset vector”,
this address only contains a “jmp” instruction.
Motherboard ensures this instruction redirects
to the memory location that holds BIOS entry
point.

CPU Initialization

• The memory map which is
held by the chipset knows
address is pointing to the
BIOS, so CPU would run
instructions from BIOS flash
memory instead of RAM.

• As you can see in this state
the processor works under
real mode, which means
there’s only 1MB of memory
could be used.

CPU Initialization (a time travel)

• This initialization sequence is designed all the
way back to Intel 8086 in 1978.

• All modern x86 CPUs behave the same way as
8086 due to the back compatibility.

• Except the reset vector, 8086/80286/80386
and it’s processors have different physical
memory address due to different addressing
length.
(8086/286 is 20bit while 386 and so on is more)

BIOS and POST

• While CPU is starting executing BIOS code, first
it initialize some basic hardware in the system.

• Afterwards BIOS starts Power-on Self Test
(POST) which tests various components in the
computer.

• It tries to find video card first. In particular,
POST tries to find the video card BIOS then run
it to initialize video card. That’s why a lot of
computers shows video card information before
system BIOS.

BIOS and POST

• If there’s no video cards, POST beeps for alarm.
• Then POST checks other hardware like

RAM\Hard drives\Floppy drives\CD-ROM...
and show their information on screen.

• If there’s any fatal errors (like keyboard is
missing, there’s no memory…) the system halts
immediately.

• If there’s something wrong but not too serious,
POST might pause for warning, but the system
still can boot by ignoring them manually.

Boot sector

• If POST runs successfully, the BIOS calls a special
system interrupt INT 19h to start booting.

• BIOS selects a boot device according to the boot
priority sequence, then copies the first sector from
the first bootable device into physical memory
address 0x7C00.

• This very first boot sector called MBR (Master Boot
Record) or VBR (Volume Boot Record), depends on
the storage device is partitioned or not. MBR
invokes VBR from an active partition eventually.

Boot sector

• On IBM-compatible PC (which means almost all
modern PCs), there’s also a signature for a boot
sector. It always ends with last two bytes are
0x55 0xAA. This helps BIOS recognizing
whether this device is bootable or not.

• Once the boot sector is loaded in the RAM, BIOS
tells CPU to run the code at address 0x7C00,
hands the boot process to boot sector.

Linux 0.11 boot sector (bootsect.s)

• So the source code of boot sector in Linux 0.11 is
placed under /boot/ in bootsect.s

• This piece of assembly code is written in as86
format (it’s different from GNU assembly!)

• It mainly does these following things:
▫ 1. Move itself from 0x7C00 to 0x90000
▫ 2. Use BIOS interrupt INT 13h to load system

initialization routine (setup.s) at 0x90200 and
compiled system module (the kernel) at 0x10000

▫ 3. Check which root-device to use & invoke setup.s.

Linux 0.11 boot sector (bootsect.s)

• From above we could know
that actually bootsect.s works
nothing more like a loader.

• It’s worth mentioning that
as Linus writing 0.11 kernel,
he thoughts the size of kernel
will never be over 512KB.
That’s why he decided to move
bootsect.s at 0x90000 and put
kernel at 0x10000.

Linux 0.11 OS loader (setup.s)

• This routine is also placed under /boot/
• It’s loaded by bootsect.s at 0x90200 (exactly

512bytes after 0x90000, which is the length of
boot sector)

• This code is responsible for getting system data
from BIOS (like memory/disk/others) and
putting them to a “safe” place (0x90000 actually,
where bootsect.s used to stay).

• It also tries to get CPU into protected mode and
invoke the kernel.

Protected mode

• While in real mode, CPU could only use 1MB of memory,
in protected mode there’s no limit thanks to the segment
addressing. Additionally it also provides paging feature

so that OS could manage memory more efficiently.

Protected mode

• Protected mode also introduces the privilege levels
(from Ring 0 to Ring 3), allows for OS to restrict tasks
from accessing data, call gates or executing privileged
instructions.

• In Linux 0.11 and so on, the kernel and some of the
device drivers run in Ring 0,
other applications run in Ring 3.

Into protected mode

• Setup.s does the following things in order to get
CPU into protected mode:

▫ 1. Move the whole kernel from 0x10000 to
0x00000

▫ 2. Load segment descriptors

▫ 3. Enable A20

▫ 4. Reprogramming the interrupt vector table

▫ 5. Enable protected mode, reload machine status
word (CR0 register)

Move kernel from 0x10000 to 0x0

• This part of code does almost exactly the same
thing as the bootsect.s, or even simpler since the
source is already in RAM, not on a storage
device.

• It’s the first step of enabling the protected mode.
From now on, no interrupt is allowed while
executing until the OS is loaded.

• (line 108~127)

Preparing segment descriptors

• 80X86 protected mode provides segment
mechanism for memory management.

• In order to do such a thing, it introduces “descriptor
tables” to hold basic information for different
segments like max length, base address, privilege
level, read/write access control, etc.

• It also brings in some new registers,
GDTR\LDTR\IDTR\TR, respectively corresponds to
Global\Local\Interrupt\Task, which holds the
address to the actual descriptor tables.

Preparing segment descriptors

• As we all know there’s almost nothing in our
memory when we started up the computer, so we
have to set descriptor tables (GDT and IDT in
particular) and their corresponding registers
manually in order to get into protected mode.

• In setup.s, Linus decided to set up GDT\IDT
temporarily, fill GDTR\IDTR with correct
address and hand them to the actual OS
initialization process to deal with.

Preparing segment descriptors

• More precisely, the GDT is set to hold code and
data descriptor for the current kernel (at 0x0).

• IDT is simply set to an empty placeholder, since
no interrupt is allowed while setup.s is executing.

• That’s enough for now to get CPU into 32bit
protected mode, the OS initialization routine
(head.s) later will set up GDT and IDT again for
kernel.
(line 205~244, loads at line 128~135)

A20 line and its history

• Back to the 8086/80186 era, there’s only 20 address
lines (A0~A19) in CPU, so the processor can access
1MB memory at total. As for the address above 1MB
(like 0x100000), the bits higher than the 20th bit is
been cut, so actually the memory address is
“wrapped around” to 1MB.

• When IBM designed IBM-PC, they decided to use
more powered 80286 as the CPU, it has the
protected mode that could addressing more than
1MB, it also has the real mode for back compatibility.

A20 line and its history

• Sadly 80286 has a bug where it failed to force A20
line to zero in real mode. This causes this CPU
cannot do the “wrap around” trick like the original
8086. Some old programs might no longer work.

• For compatibility’s sake, IBM decided to fix the
problem on the motherboard. This was done by
inserting a logic gate on the A20 line between the
processor and system bus. This gate can be enabled
or disabled by software to allow or prevent the
address bus from receiving a signal from A20.

A20 line and its history

• The original Gate-A20 is connected to the Intel
8042 keyboard controller (simply because there are
spare pins in it). But it operates slow, so there are
several other methods to do it. Finally the industry
settled on the PS/2 method of using a bit in PORT
92h control the A20 line.

• 80286’s processors use different techniques to
simulate Gate-A20’s behavior, until recently in
Haswell microarchitecture, Intel finally decides to
remove A20 support since it’s “not used by modern
operation systems”.

A20 line controlling in setup.s

• From above we know that it’s an important step
to set A20 enabled in order to get into protected
mode.
(Actually in POST routine, BIOS would enable
A20 for testing all system memory, but disabled
it again after testing.)

• In setup.s, Linus uses the classic keyboard
controller method to operate Gate-A20.
(line 137~144)

Reprogramming Interrupts

• In setup.s, Linus complains about how IBM original
PC BIOS messed up the interrupts by putting them
at INT 0x08-0x0f, which is still in Intel-reserved
hardware interrupts range.

• So he has to reprogram the 8259 PICs and put those
interrupts at INT 0x20-0x2f, right after the
hardware interrupts range.

• This part of code is been labeled “not fun” by Linus
and he also pokes at BIOS routine being “wants lots
of unnecessary data, and less ‘interesting’ ”.
(line 154~180)

Enable protected mode

• With all above works done, finally we’re about to
enable the protected mode.

• 80x86’s has several control register (CR0~CR4),
among these, CR0 register is the one that controls the
operation type of CPU. The lowest bit (PE bit) defines
whether the CPU is working under real mode or
protected mode.

• The highest bit (PG bit) of CR0 is paging bit, defines
the paging mechanism is enabled or not.

Enable protected mode

• Now, all we have to do is to set the PG bit in CR0
as 1 (enable), then refresh the instruction queue.

• CPU reads instruction before executing them, so
the address in old instruction queue is still under
real mode (which is wrong by now). Refreshing
is accomplished by executing “jmp” instruction.

• Since we’ve moved kernel to 0x0, the “jmp”
instruction jumps to 0x0 directly to invoke the
OS kernel initialization process. (line 191~193)

Linux 0.11 OS Initialization

(head.s/main.c)
• Although head.s is placed under /boot/, but it’s

compiled with main.c (under /init/) and all
other system modules, forming a complete
executable kernel.

• Apparently head.s is placed at the start of the
compiled kernel, it’s also responsible for
invoking void main(void) from main.c.

• head.s is written in normal GNU assembly
language, different from bootsect.s and setup.s.
It runs under 32bit protected mode.

head.s

• This initialization routine is rather simple,
basically it’s just a bunch of tests and settings.

• It does these following things:
▫ 1. Resets all the data segment registers

(DS, ES ,FS, GS and stack register SS, SP)
▫ 2. Setup the new GDT and IDT
▫ 3. Check whether A20 is truly enabled
▫ 4. Test if there’s any co-processors available
▫ 5. Enable paging (CR0 31st bit)
▫ 6. Invoke void main(void) from main.c

Reset data segment registers

• Since we’re in protected mode, we need “segment
selectors” to specify a segment.

• CPU provides us 6 registers, CS, SS, DS, ES, FS, GS,
used for different selection. CS is used for code
segment, SS is used for stack segment, DS-GS is all
used for data segment.

• So the first thing that head.s do is initializing these
registers, DS-GS is set with the data descriptor that
defined in setup.s. SS is set with _stack_start,
which is defined in /kernel/sched.c, used as the start
of user stack. CS is reloaded with GDT.

Set up the new GDT

• There’s no big difference between the new GDT and
old, expect the segment length is adjusted to 16MB
instead of 8MB.

• But the thing that worth mentioning is after loading
new GDT, usually all the respecting segment
registers should be reloaded too.
In head.s though, Linus doesn’t reloaded CS register
because 8MB segment is enough for kernel
initialization, and there’ll be another jmp instruction
later for reloading CS register later.
(This problem has been solved in later kernel
versions, by inserting a ljmp instruction)

Set up the new IDT

• At this stage, all 256 entries in IDT points to
ignore_int, which is a simple placeholder that
does nothing. It’s safe to do such a thing because
we’re still not allowing any interrupts.
The real interrupt gates will be loaded and
enabled later.

• The new GDT/IDT is located at the end of head.s.

(line 18~31)

Check the status of A20 line

• This is accomplished simply by writing any
number to address 0x0, then check 0x100000
whether holds the same number.

• If they’re same, that means the A20 line is not
enabled, kernel can’t use memory above 1MB.
System will be trapped in a forever loop.

(line 32~36)

Testing co-processors

• The “co-processor” here are mainly describing
Intel 80287/387 floating point coprocessors.
But all x87 floating point instruction are
implemented in main CPU since 80486, it’s
rather unnecessary to check these co-processors
nowadays.

(line 37~66)

Setup paging in Linux 0.11

• Setting up paging scheme is the last thing that
head.s do before invoking main(void) from
main.c.

• So firstly we have to push the address of main
function into system stack that we could jump to
it directly when returning from “setup_paging”
subroutine.

Setup paging in Linux 0.11

• The paging scheme in Linux 0.11 kernel is simple, 1
page directory at the top, 4 page tables, 1024 entries
per table, 4KB per page, handles 16MB memory in
total (could be larger if you hack the this part of code)

• The page directory and page tables are located at
0x0, the start of head.s, since the old routines that
used to be there is useless by now.

• Once the page directory and page tables are set, we
set the value of CR3 register which holds the base
address to page directory. Finally, set the 31st bit (PG
bit) of CR0 register to 1 to enable paging scheme.

Setup paging in Linux 0.11

• Like other changes that we did to GDT before,
jump instruction is needed to refresh the
instruction queue.

• Here in head.s, we simply use a “ret” instruction,
it’ll directly jump at the start of main(void)
according to the stack we’ve pushed in before.

• This is a also a basic trick to invoke C function in
assembly language.
(line 135~218)

The memory looks like this while

main(void) is being invoked…

main.c

• Here we are finally! The good old C code!
• main.c is the final part of the whole OS initialization

process.
• First, it uses information that setup.s gathered to

initialize the memory cache, RAMDISK (if defined)
and main memory.

• Second, the kernel initialize all the basic hardware
including interrupt vectors, block device, character
device, tty… It also reads time from CMOS, initialize
the scheduling program, buffer management, HDD
and floppy, etc. When all hardware is initialized, the
kernel enables interrupt. (line 55~136)

Task 0 Idle

• Now the system is all initialized, kernel move itself
to user-mode and start creating processes (tasks).

• The very first two tasks that OS launches are special.
Task 0 is the “idle” task.

for (;;) pause();

• All it does is keep invoking pause(), make itself
interruptible by any other tasks.
But the scheduling module always switches back to
Task 0 while there’s no other tasks to do, regardless
of its status. (line 137~149)

Task 1 init

• Task 1, created by Task 0 by invoking system call
fork(), is responsible for mounting the root file
system, open the terminal device (/dev/tty0) and
stdout/stderr, and creates Task 2 to make sh non-
interactively run shell script from /etc/rc (Similar to
AUTOEXEC.BAT under MS-DOS)

• If all these going well, finally Task 1 creates another
task to run “-/bin/sh”, the hyphen tells sh that this is
a interactive shell environment.
At last, sh takes over the computer, shows the
prompt, and waits input from user. (line 168~210)

Voilà!
Your computer has booted

successfully!

But wait, we’re not done yet.

Why are they special?

• In Linux, creating new process is done by copying
from the parent process first, and all other processes
(including Task 1) are created by Task 0.

• As we know, every process has a two stacks, kernel
stack and user stack. Since kernel stack is
independent between processes, it’s important to
keep “clean” state of user stack, especially for Task 0.

• In fact, Task 0 and Task 1 is shared the same code
and data segment from kernel, which means they
share the same user stack.

Why are they special?

• So in main.c, all system call like fork()/pause()
is inlined into the code, we could use them
without polluting the user stack of Task 0.

• As for Task 1, it shares user stack with Task 0,
but its page table entry is been set “read-only”.
Once Task 1 executes a stack operation, it
triggers a “write-protect fault”, then the
memory management module allocates a new
page for Task 1’s own user stack.
(This technique is called “copy-on-write”)

Now we’re done!

Thanks!

Compiled by Light Catcher

Dec, 23, 2015

References

• http://duartes.org/gustavo/blog/post/how-
computers-boot-up/

• http://www.pcguide.com/ref/mbsys/bios/bootS
equence-c.html

• http://www.tomshardware.com/forum/273879-
28-what-sequence-pushing-power-button-
startup

• Wikipedia
• A Heavily Commented Linux Kernel Source

Code –Linux version 0.11, Rev 3.0, Chapter 6\7

http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://duartes.org/gustavo/blog/post/how-computers-boot-up/
http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html
http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html
http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html
http://www.pcguide.com/ref/mbsys/bios/bootSequence-c.html
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup
http://www.tomshardware.com/forum/273879-28-what-sequence-pushing-power-button-startup

